Machine Learning: the fly-by overview

Honey

Diana Pfeil

Machine Learning

Supervised Learning

Unsupervised Learning

Statistical Modeling

Descriptive, Predictive, and Prescriptive Analytics

Al

What about Big Data?

Supervised Learning

 X_i

features (input variables)

 y_i

target (output variable)

 $(x_i, y_i), i = 1, ..., m$

training set

Goal: learn a function

 $h: \mathcal{X} \to \mathcal{Y}$

such that h(x) is a good predictor of y on **new** data

features x can be

numeric/metric Age: 14, 56, 1

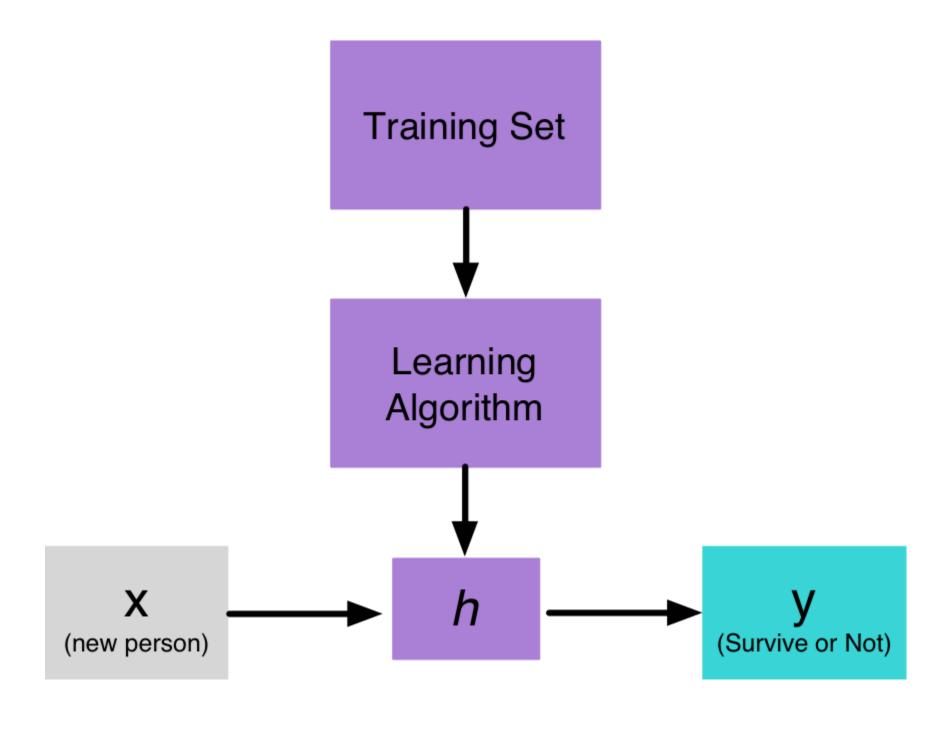
ordinal Ranking: 1st, 2nd, 3rd

categorical/nominal Sex: male/female

target y can be

continuous (regression) Housing Price: 500K, 150K, 2MM

categorical (classification) Survival: Perish, Survive



Example Data

PassengerId S	Survived Pcl	ass	Nam	e Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harri	s male	22	1	0	A/5 21171	7.2	<na></na>	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer) female	38	1	0	PC 17599	71.3	C85	C
3	1	3	Heikkinen, Miss. Lain	a female	26	0	0	STON/02. 3101282	7.9	<na></na>	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel) female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henr	y male	35		0	373450	8.1	<na></na>	S
6	0	3	Moran, Mr. Jame	s male	e NA		0	330877	8.5	<na></na>	Q
7	0	1	McCarthy, Mr. Timothy	J mal∈	54	0	0	17463	51.9	E46	S
8	0	3	Palsson, Master. Gosta Leonar	d mal∈	2	3	1	349909	21.1	<na></na>	S
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female	27	0	2	347742	11.1	<na></na>	S
10	1	2	Nasser, Mrs. Nicholas (Adele Achem) female	14	1	0	237736	30.1	<na></na>	C
11	1	3	Sandstrom, Miss. Marguerite Ru	t female	4		1	PP 9549	16.7	G6	S
12	1	1	Bonnell, Miss. Elizabet	h femal∈	58	0	0	113783	26.6	C103	S
13	0	3	Saundercock, Mr. William Henr	y mal∈	20	0	0	A/5. 2151	8.1	<na></na>	S
14	0	3	Andersson, Mr. Anders Joha	n mal∈	39	1	5	347082	31.3	<na></na>	S
15	0	3	Vestrom, Miss. Hulda Amanda Adolfin	a female	14	0	0	350406	7.9	<na></na>	S
16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55	0	0	248706	16.0	<na></na>	S
17	0	3	Rice, Master. Eugen	e male	2	4	1	382652	29.1	<na></na>	Q
18	1	2	Williams, Mr. Charles Eugen	e male	e NA	0	0	244373	13.0	<na></na>	S
19	0	3 Vano	der Planke, Mrs. Julius (Emelia Maria Vandemoortele) female	31		0	345763	18.0	<na></na>	S
20	1	3	Masselmani, Mrs. Fatim	a female	NA		0	2649	7.2	<na></na>	C
21	0	2	Fynney, Mr. Joseph	J mal∈	35		0	239865	26.0	<na></na>	S
22	1	2	Beesley, Mr. Lawrenc	e mal∈	34		0	248698	13.0	D56	S
23	1	3	McGowan, Miss. Anna "Annie	" femal∈	15		0	330923	8.0	<na></na>	Q
24	1	1	Sloper, Mr. William Thompso	n mal∈	28		0	113788	35.5	A6	S
25	0	3	Palsson, Miss. Torborg Danir	a female	8	3	1	349909	21.1	<na></na>	S

But where do we find this h?

This is the process of doing supervised learning

Models for Supervised Learning

Classification Tree

Regression Tree

Random Forest

Linear Regression

Support Vector Machine

Logistic Regression

Boosting

K-Nearest Neighbors

Naive Bayes

Neural Networks/Deep Learning (AI)

ML Workflow for prototyping

- 1. Clean and explore the data (EDA)
- 2. Come up with new features (feature engineering)
- 3. Split data into training and validation
- 4. Tune the model and parameters using cross-validation
- 5. Compare model results

Key skills for *doing* data science/ML/Al

- Defining the problem and what success looks like
- Exploratory data analysis
- Machine learning
- Setting aside time to think
- Data communication and visualization

A Typical Toolkit

- Python with pandas, numpy, scipy, jupyter
- tensorflow/keras/pytorch
- Unix utilities

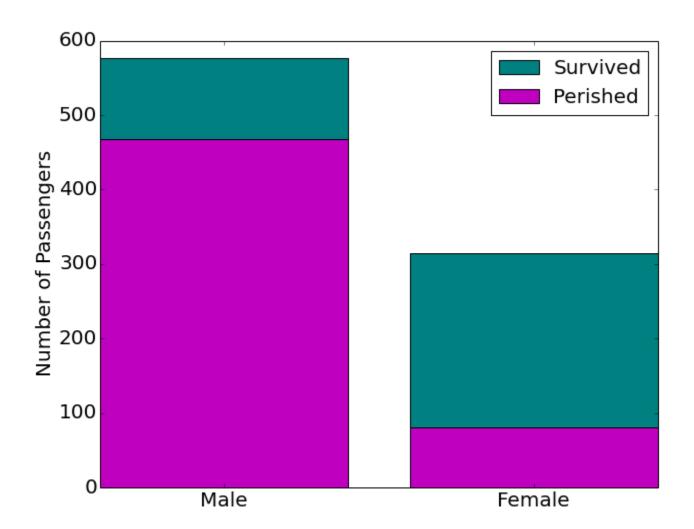
Other options

- JVM-based eco-system: Spark, Hadoop
- Vowpal wabbit
- R, RStudio, RMarkdown
- SPSS, Excel, RapidMiner

More on data cleaning and EDA

Purpose of EDA

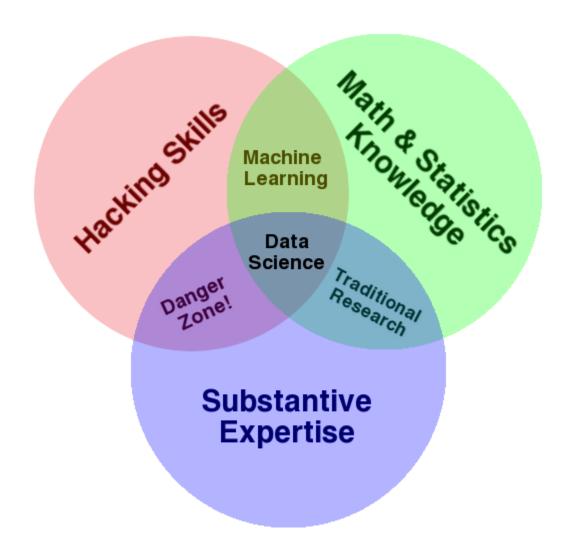
- Do you have the right data for the question you're trying to answer?
- Check assumptions and detect mistakes
- Get a sense for the data you have, and start to understand how it can answer the question at hand



I'm a data janitor

-Josh Wills, head of Data Engineering at Slack

Feature engineering



Source: http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

A little exercise

PassengerId	Survived Pcl	ass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2	<na></na>	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.3	C85	C
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 3101282	7.9	<na></na>	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35		0	373450	8.1	<na></na>	S
6	0	3	Moran, Mr. James	male	NA		0	330877	8.5	<na></na>	Q
7	0	1	McCarthy, Mr. Timothy J	male	54		0	17463	51.9	E46	S
8	0	3	Palsson, Master. Gosta Leonard	male	2		1	349909	21.1	<na></na>	S
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0	2	347742	11.1	<na></na>	S
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14		0	237736	30.1	<na></na>	C
11	1	3	Sandstrom, Miss. Marguerite Rut	female	4	1	1	PP 9549	16.7	G6	S
12	1	1	Bonnell, Miss. Elizabeth				0	113783	26.6	C103	S
13	0	3	Saundercock, Mr. William Henry	male	20	0	0	A/5. 2151	8.1	<na></na>	S
14	0	3	Andersson, Mr. Anders Johan	male	39		5	347082	31.3	<na></na>	S
15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14		0	350406	7.9	<na></na>	S
16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55		0	248706	16.0	<na></na>	S
17	0	3	Rice, Master. Eugene	male	2		1	382652	29.1	<na></na>	Q
18	1	2	Williams, Mr. Charles Eugene				0	244373	13.0	<na></na>	S
19	0	3 Van	der Planke, Mrs. Julius (Emelia Maria Vandemoortele)	female	31		0	345763	18.0	<na></na>	S
20	1	3	Masselmani, Mrs. Fatima		NA		0		7.2		C
21	0	2	Fynney, Mr. Joseph J	male	35		0	239865	26.0	<na></na>	S
22	1	2	Beesley, Mr. Lawrence				0	248698	13.0	D56	S
23	1	3	McGowan, Miss. Anna "Annie"				0	330923		<na></na>	Q
24	1	1	Sloper, Mr. William Thompson				0	113788		A6	S
25	0	3	Palsson, Miss. Torborg Daniro	female	8	3	1	349909	21.1	<na></na>	S

ML Models

Supervised Learning

 X_i

features (input variables)

 y_i

target (output variable)

 $(x_i, y_i), i = 1, \ldots, m$

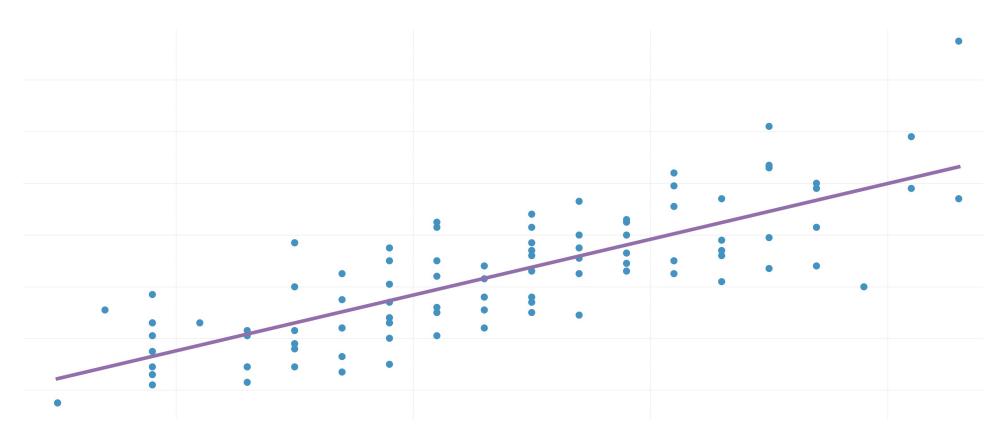
training set

Goal: learn a function

 $h: \mathcal{X} \to \mathcal{Y}$

such that h(x) is a good predictor of y on **new** data

Linear Regression



Goal: find the best line

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + e$$

Sum of squared error loss: $(y - \hat{y})^2$

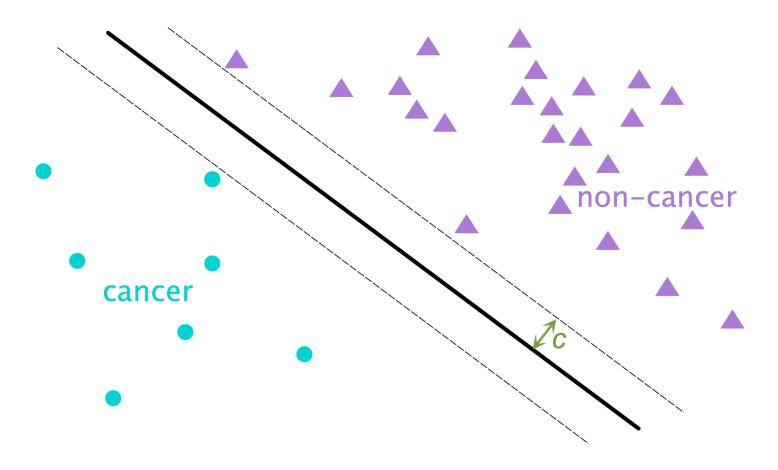
Linear Regression Advantages

- Highly interpretable
- Can assess statistical significance of each predictor

Disadvantages

- Limiting: only works for a linear relationship between features x and y
- Requires strong assumptions: no collinearity, homoscedasticity, normally distributed errors
- With collinearity, the regression is unstable (high variance)
- Sensitive to outliers

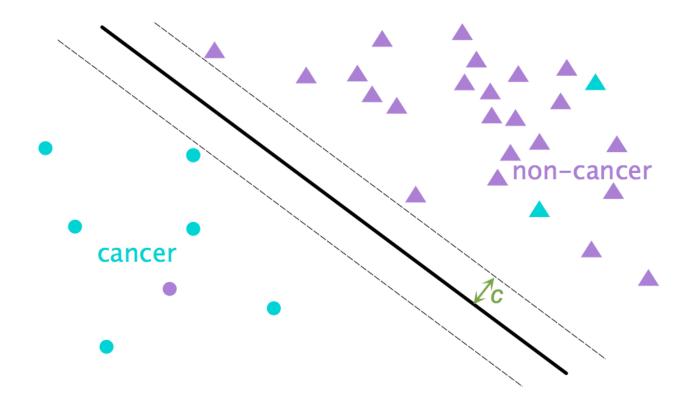
Support Vector Machine



max c

s.t.
$$\|\beta\| = 1$$
 and $y_i(\beta^T x_i) \ge c$ $i = 1, ..., n$

SVM: Robust Classification



 $\max c - p$

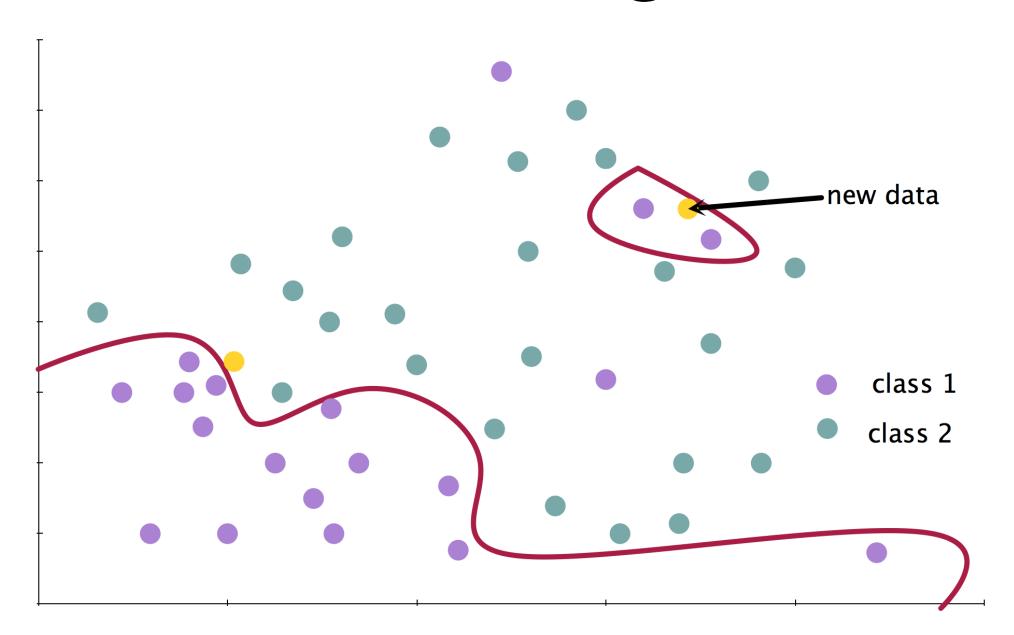
balance separation between classes against penalty for outliers

Goal of Model Fitting

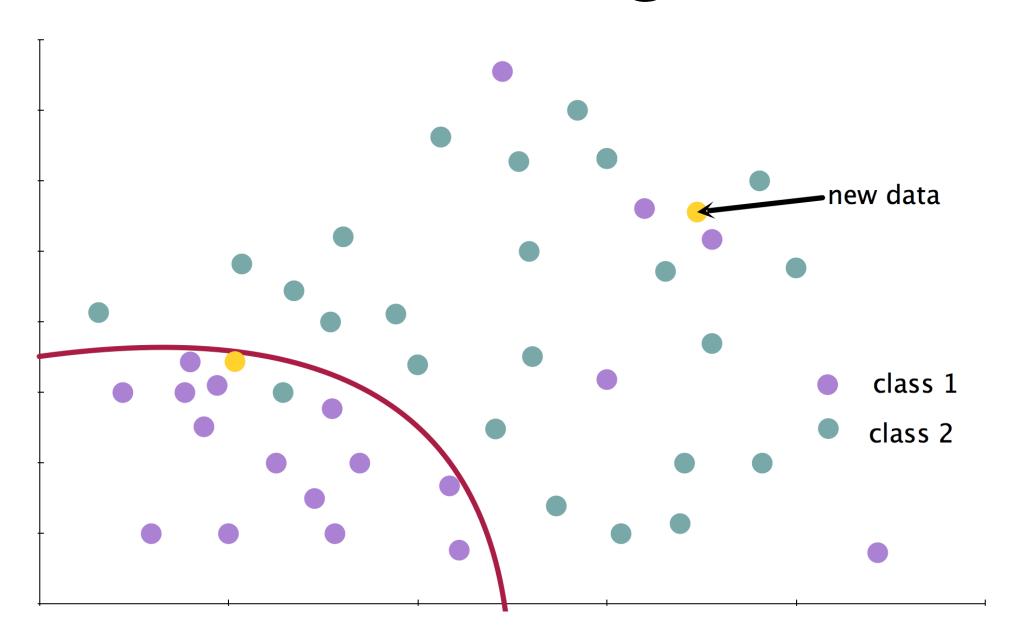
Build a model that has great accuracy on new data

- Accuracy comes from minimizing a loss function
- Typical loss function for regression: mean squared error
- Avoid overfitting!

Overfitting



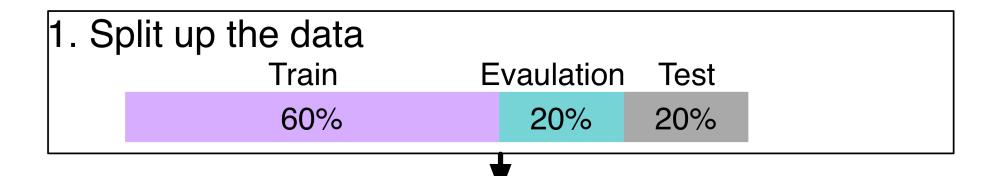
Overfitting



Model Tuning

Many models have parameters which cannot be estimated directly from the data.

These are called: hyperparameters or tuning parameters



2. Fit the model for each set of hyperparamers

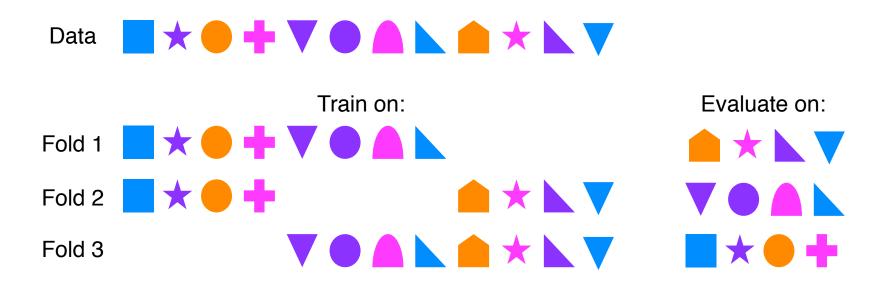
$$| \text{lambda} = 1 \text{e-}3 \longrightarrow \text{fit} \longrightarrow \text{Accuracy} = 0.8$$

$$| \text{lambda} = 1 \text{e-}1 \longrightarrow \text{fit} \longrightarrow \text{Accuracy} = 0.85$$

$$| \text{lambda} = 1 \longrightarrow \text{fit} \longrightarrow \text{Accuracy} = 0.81$$

3. Determine the best hyperparameter settings & Estimate final model accuracy on test set

Cross Validation



Advantages:

usually a good estimate of model performance

Disadvantages:

 Computationally expensive for large data sets or when tuning many points

Choosing Between Models

Try many models, choose the simplest model that performs well.

Areas to explore next

- Lots more on cleaning and exploring data (EDA)
- Lots more to discuss on feature engineering
- Model fitting and evaluation: hands on, how to do this well
- How each model works, including deep learning
- Data ethics
- Models in production: testing, model decay, model maintenance
- Model Explainability
- Recommender systems and collaborative filtering
- Unsupervised learning
- A/B testing